通过私钥来获得比特币钱包地址的具体流程有些复杂,因此我们会描述简化后的版本。我们需要使用一个哈希函数去获得公钥,还需要使用另一个函数去获得地址。
现在,让我们开始吧。
公钥
这部分内容和之前讨论比特币的文章中所说的相同,所以如果你已经读完了,那么就可以跳过(除非你想要复习一下)。
首先,我们需要在私钥上使用 ECDSA,即椭圆曲线数字签名算法。椭圆曲线是通过 y² = x³ + ax + b 公式得出的,其中 a 和 b 可以自定义。椭圆曲线家族有很多知名并且广泛应用的案例。比特币使用了 secp256k1 曲线,关于椭圆曲线密码学,如果你想了解更多,可以参考此文章。
以太坊使用了同样的椭圆曲线,secp256k1,因此对于比特币和以太坊来说,获得公钥的流程是相同的。
对私钥作了 ECDSA 运算之后,我们得到了 64 字节的整数,这是由两个 32 字节的整数串联组成,代表了椭圆曲线上某个点的 X 值和 Y 值。
在 Python 程序中,代码显示如下:
private_key_bytes = codecs.decode(private_key, ‘hex’)
# Get ECDSA public key
key = ecdsa.SigningKey.from_string(private_key_bytes, curve=ecdsa.SECP256k1).verifying_key
key_bytes = key.to_string()
key_hex = codecs.encode(key_bytes, ‘hex’)
注意:从上面的代码可以看出,我使用了 ecdsa 模块并通过编码器解码了私钥。这样写更多是因为 Python 的关系,而与算法本身无关,为免误解,让我来好好解释一下。
Python 语言中,至少有两种数据类型可以保存私钥和公钥:“str”和“bytes”。前者对应的是 string(字符串),后者则是 byte array(数值)。Python 语言中的密码学运算只能对“bytes”类操作,将 byte 型数据作为输入,并且将输出作为结果。
但是,这里面有个小问题:作为字符串的“4f3c”和作为 byte array 的 4f3c 是不等同的,string 等于 byte array 和两个元素 O< 的结合。codecs.decode 方法就是将字符串转换为 byte array。本文中使用的密码学操作都要进行这一步骤。
钱包地址
一旦获得公钥,我们就可以计算出钱包地址,和比特币不同,以太坊在主网和所有测试网都有相同的地址。当用户发起转账和签名的时候,他们需要选择相应的网络。
为了通过公钥得出地址,我们需要做的就是在公钥上应用 Keccak-256 加密算法,然后拿出结果的后 20 个字节,这样就可以了。整个过程不需要其他的哈希函数,无需 Base58 编码,也不用其他任何转换,你唯一需要做的事情就是在地址的开头添加“0x”。